Tree Diagrams
Independents events: replacement. When one-step does not affect the other.
INDEPENDENT EVENTS:
3
Daniel has ten coloured marbles in a bag. Three of the marbles are red and 7 are blue. He removes a marble at random from the bag and notes the colour before replacing it.
He then chooses a second marble at random.

$$
\text { Total } 3+7=10
$$

$$
\begin{aligned}
& \Omega \\
& (R, R) \frac{3}{10} \times \frac{3}{10}=\frac{9}{100} \\
& (R, B) \frac{3}{30} \times \frac{7}{70}=\frac{21}{100}
\end{aligned}
$$

* on the tree we multiply s
a) Record the information in a tree diagram.

b) Calculate the probability of him selecting both red marbles

$$
P(R, R) \frac{3}{10} \times \frac{3}{10}=\frac{9}{100}
$$

c) Calculate the probability of him selecting a red marble followed by a blue marble.

$$
P_{(R, B)}=\frac{3}{10} \times \frac{7}{10}=\frac{21}{100}
$$

d) Calculate the probability of him selecting different colour marbles. * off the tree add*

$$
\begin{gathered}
P \text { (differentcolurs) }=\frac{21}{100}+\frac{21}{100}=\frac{42}{100}=\frac{21}{50} \\
P(R, B) \quad P(B, R)
\end{gathered}
$$

Dependent events: occurs when the first step affects the other steps. No replacement.
DEPENDENT EVENTS:

Dante has ten coloured marbles in a bag. Throe_ of the marbles are red and 7 are blue. He removes a marble at random from the bag, notes the colour and DOES NOT replace it. He then chooses a second marble at random.
a) Record the information in a tree diagram.
Ω
\qquad
$(R, R) \frac{3}{10} \times \frac{2}{9}=\frac{6}{90}$ (R, B) $\frac{3}{10} \times \frac{7}{9}=\frac{21}{90}$ (B, R) 勇 $\times \frac{3}{9}=\frac{21}{90}$
$(B, B) \frac{7}{10} \times \frac{6}{9}=\frac{42}{90}$
b) Calculate the probability of him selecting both red marbles

c) Calculate the probability of him selecting a red marble followed by a blue marble.

$$
P(R, B)=\frac{3}{10} \times \frac{7}{9}=\frac{21}{90}=\frac{7}{30}
$$

d) Calculate the probability of him selecting different colour marbles.

$$
\begin{gathered}
P_{(\text {different colour) })}=\frac{21}{90}+\frac{21}{70}=\frac{42}{90}=\frac{7}{15} \\
P_{(R, B)} P(B, R)
\end{gathered}
$$

