\qquad
\qquad

Circles Extra Practice

1) Find the shaded area

$$
\begin{aligned}
& A_{0}=\pi r^{2} \\
& A_{0}=\pi 3^{2} \\
& A_{0}=9 \pi \\
& A_{0}=28.26 \mathrm{~cm}^{2}
\end{aligned}
$$

2) The diagram shows two circles and a square, $A B C D$. A and B are the centres of the circles. The radius of each circle is 5 cm . Calculate the area of the shaded part of the square.

$$
90^{\circ}+90^{\circ}=180^{\circ}
$$

$90^{\circ}+90^{\circ}=180^{\circ}$
(4) $100-39.25=60.75 \mathrm{~cm}^{2}$

Shaded area $=60.75 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { (3) } \frac{\leq}{360^{\circ}}=\frac{S}{A} \\
& \frac{180^{\circ}}{360^{\circ}}=\frac{S^{-5} 0^{-1}+0^{2}}{78.5}
\end{aligned}
$$

$39.25 \mathrm{~cm}^{2}$ = both sectres together
\qquad
\qquad
3) Which is Bigger?

The diagram shows parts of two circles, sector A and sector B

(a) Which sector has the bigger area?

Show working to explain your answer.

$$
\begin{aligned}
& A_{O A}=\pi r^{2} \\
&=\pi 5^{2} \\
&=\pi 25 \\
&=78.25 \\
& \frac{1}{8} \times 78.25=9.8125 \mathrm{~cm}^{2}
\end{aligned}
$$

Sector $\frac{B \text { has a bigger area }}{2}$

$$
\begin{aligned}
A_{O B} & =\pi r^{2} \\
& =\pi 4^{2} \\
& =16 \pi \\
& =50.24 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\frac{1}{5} \times 50.24=10.048 \mathrm{~cm}^{2}
$$

(b) The perimeter of a sector is made from two straight lines and an arc.

Which sector has the bigger perimeter?
Perimeter A is bigger
Show working to explain your answer.
(1)

$$
\frac{1}{8} \times 360^{\circ}=45^{\circ}
$$

$$
\frac{1}{5} \times 360=72^{\circ}
$$

(2)
(2)

$$
\begin{aligned}
c & =2 \pi r \\
& =2 \pi 5 \\
& =10 \pi \\
& =31,4
\end{aligned}
$$

(4) $P_{A}=5+5+3.925$

$$
P_{A}=13.925 \mathrm{~cm}
$$

(3)

$$
\begin{aligned}
& \frac{\leq}{360^{\circ}}=\frac{\operatorname{arc}}{c} \\
& \frac{45}{360^{\circ}}=\frac{\operatorname{arc}}{31.4} \\
& \operatorname{arc}=3.925 \mathrm{~cm}
\end{aligned}
$$

\qquad
\qquad
4)

The diagram shows a sector $O A B C$ of a circle with centre O.
$O A=O C=10.4 \mathrm{~cm}$.
Angle $A O C=120^{\circ}$.
(a) Calculate the length of the arc $A B C$ of the sector.

Give your answer correct to 3 significant figures.
(1) $C=2 \pi r$
$C=2 \pi(10.4)$
(2) $\frac{c}{360^{\circ}}=\frac{\operatorname{arc}}{C}$

$C=20.8 \pi$
$\frac{120^{\circ}}{360^{\circ}}=\frac{\operatorname{arc}}{65 \cdot 312}$
cm
$c=65,312 \mathrm{~cm}$ \qquad
(b) Calculate the area of the shaded segment $A B C$.

Give your answer correct to 3 significant figures.
Skip
\qquad
\qquad
\qquad
5) A circle has a circumference of $\mathbf{1 2 0} \mathbf{c m}$. What is the area of the circle?

Show your work.
(1)

$$
\begin{aligned}
& C=\pi d \\
& \frac{120=}{\pi}=\frac{\pi d}{\lambda} d
\end{aligned}
$$

$$
38.22=d
$$

(2) $r=\frac{d}{2}=\frac{38.22}{2}=19.11 \mathrm{~cm}$
6) Janine has a garden in the corner of her yard and wishes to line it with bricks, as shown in the diagram below. The area of her garden is 03.9 dm Sector
What is the total length of the bricks Janine will need to wrap around her entire garden exactly once? Round the answer to the nearest tenth.

(3) $c=2 \pi r$
 $c=2 \pi(11.5)$

$$
\begin{aligned}
& c=23 \pi \\
& c=72.22 \mathrm{dm}
\end{aligned}
$$

(4)

$$
\frac{90^{\circ}}{360^{\circ}}=\frac{\operatorname{arc}}{72.22}
$$

$$
\operatorname{arc}=18,055 \mathrm{dm}
$$

(2) $A=\pi r^{2}$ $=\pi 19.11^{2}$
$=\pi 365.19$

$$
\frac{90^{\circ}}{360^{\circ}}=\frac{103.9}{A}
$$

$$
\frac{415.6 \mathrm{~cm}^{2}}{\pi}=\frac{\pi r^{2}}{\pi}
$$ $=1146.70 \mathrm{~cm}^{2}$

$$
415 \cdot 6=A
$$

$$
\begin{aligned}
& 132.36=r^{2} \\
& \sqrt{132.36}=\sqrt{r^{2}} \\
& 11.5 \mathrm{dm}=r
\end{aligned}
$$

$$
\frac{5}{360^{\circ}}=\frac{a r c}{c}
$$

(5) ${ }^{p=} 11$

