
Name: _____

Date: _____

Sectors

To find the area of a sector, we use a proportion using the relationship between the measure of the central angle and the areas.

RULE:
$$\frac{Central\ angle}{360^{\circ}} = \frac{Area\ of\ the\ Sector}{Area\ of\ the\ Disc}$$

Example 1: Finding the area of a sector

Central angle = 120° Radius= 4 cm

- Radius= 4 cm
- ① K=凡(2)?
 A=凡(4)?
 A=16凡 ~ 50.27
 - $\frac{3}{360} = \frac{S}{50.27}$ $\frac{3}{360} = \frac{S}{50.27}$ $\frac{3}{360} = \frac{3}{360}$

Example 2 Finding the measure of the central angle

Area of sector = 235.5 cm Radius = 10 cm

$0 = \pi r^2$ $A = \pi (10)^2$	2) <u>L</u> =	$\frac{S}{A}$
A=1072~314.16	3	<u>Z</u> 260	314.16
Central Angle: ~ ?	^	314.16 314.16	= <u>8478</u> 0 314.16

steps.

- 1. Find the area of the disc
- 2. Write your rule
- 3. Solve for the missing term

Steps:

- 1. Find the area of the disc
- 2. Write your rule
- 3. Solve for the missing term

Example 3 Finding the diameter of a disc

Central angle: 45° Area of sector: 6.28 cm

Steps:

- 1. Write your rule
- 2. Solve for the missing term
- 3. Use $r = \sqrt{\frac{A}{\pi}}$ to solve for r. Then multiply your radius by 2 to find the diameter

$$\frac{D}{360^{\circ}} = \frac{S}{A}$$

$$A = 50.24 \text{ cm}^2$$

$$\frac{45^{\circ}}{360^{\circ}} = \frac{6.28}{A}$$

$$\frac{2260.8}{45} = \frac{45}{45}$$

(3)
$$A = \pi \Gamma^{2}$$
 $f = by 2$
 $50.24 = \pi \Gamma^{2}$ $d = 2\Gamma$
 $\pi \pi$ $d = 2(4)$
 $\sqrt{16} = \Gamma^{2}$ $d = 8cm$

Diameter

Radius.____cm