Proportional Situations

Direct Proportionality

•	Any situation involving _	ratios or rates is a
	proportional situation.	

•	In the	of a direct proportional situation, the
	numbers in the first row	(or column) -Variable x - and the second row (or
	column)-Variable y form	

Example:

Table of values of a proportional situation:

Salary according to the number of hours worked.

x: Time (h)	0	2	3	5	8
y: Salary (\$)	0	8	12	20	32

Salary according to the number of hours worked.

× Time (h)	y Salary (\$)			
0	0			
2	8			
3	12			
5	20			
8	32			

· We obtain the numbers in the second row by multiplying each term of the

first row by a constant called the _____

In the above example the salary is directly proportional to the number of hours worked.

- A direct proportional situation is represented graphically on a graph by a

_____ that passes through the _____.

• The _____ for a direct proportional situation is of the form

у=ах

where ____ represents the coefficient of proportionality.

Inverse Proportionality

- In an ______ situation, the product of the independent variable (x) and the dependent variable (y) remains _____.
- An inverse proportional situation is represented graphically by a ______
 that _____ approaches the ______. See example on p. 43 in your WB.
 When x ______, y ______.
- The _____ of an inverse proportional situation is