\qquad

Proportional Situations

Direct Proportionality

- Any situation involving \qquad ratios or rates is a \qquad proportional situation.
- In the \qquad of a direct proportional situation, the numbers in the first row (or column) -Variable x - and the second row (or column)-Variable y form \qquad .

Example:

Table of values of a proportional situation:

Salary according to the number of hours worked.

x: Time (h)	0	2	3	5	8
$y:$ Salary (\$)	0	8	12	20	32

Salary according to the number of hours worked.

\boldsymbol{x}	\boldsymbol{y} Time (\mathbf{h})
0	0
2	8
3	12
5	20
8	32

- We obtain the numbers in the second row by multiplying each term of the first row by a constant called the \qquad

In the above example the salary is directly proportional to the number of hours worked.
\qquad

- A direct proportional situation is represented graphically on a graph by a
\qquad that passes through the \qquad .

- The \qquad for a direct proportional situation is of the form $y=a x$ where \qquad represents the coefficient of proportionality.

Inverse Proportionality

- In an \qquad situation, the product of the independent variable (x) and the dependent variable (y) remains \qquad .
- An inverse proportional situation is represented graphically by a \qquad that \qquad approaches the \qquad . See example on p. 43 in your WB.

When x \qquad y \qquad .

- The \qquad of an inverse proportional situation is

